Provability of Functionnal Reactive Programming type system

<u>Esaïe Bauer</u> and Alexis Saurin IRIF – Université de Paris – CNRS – INRIA

December 2, 2021

イロト 不得下 イヨト イヨト 二日

1/21

1 Introduction

- Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka -2013)
- Sinear Temporal Logic (Kojima and Igarashi 2011)
- 4 Kripke semantic
- 5 Future works

Introduction

- 2 Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka 2013)
- 3 Linear Temporal Logic (Kojima and Igarashi 2011)
- 4 Kripke semantic
- 5 Future works

History

Eliott and Hudak introduced it in 1997 with Functionnal Reactive animation

History

Eliott and Hudak introduced it in 1997 with Functionnal Reactive animation

Program paradigm concerned by propagating a reactive input (such as stream) to ensure properties or modify values over time

History

Eliott and Hudak introduced it in 1997 with Functionnal Reactive animation

Program paradigm concerned by propagating a reactive input (such as stream) to ensure properties or modify values over time

Exemple: Spreadsheet, graphical interface, web app

Connectives:

$\bigcirc A \quad \diamondsuit A \quad \Box A \quad A \cup B$

Connectives:

$\bigcirc A \qquad \diamondsuit A \qquad \Box A \qquad A \cup B$

Pnueli used temporal logic to reason on reactive programs in 1977

Connectives:

$\bigcirc A \qquad \diamondsuit A \qquad \Box A \qquad A \cup B$

Pnueli used temporal logic to reason on reactive programs in 1977

Yuse and Igarashi use temporal logic to encode multi-level generating code extensions with persistent code

1 Introduction

- Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka -2013)
 - 3 Linear Temporal Logic (Kojima and Igarashi 2011)
 - 4 Kripke semantic
 - 5 Future works

Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)

Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)

Types of FRP

$$\mathcal{F} ::= \mathcal{V} \mathsf{ar} \mid \mathcal{F} \lor \mathcal{F} \mid \mathcal{F} \land \mathcal{F} | \mathcal{F} \to \mathcal{F} \mid \bigcirc \mathcal{F} \mid \mu X.F \mid \nu X.F \mid 1$$

Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka - 2013)

Functionnal Reactive Programming typed by a Linear Temporal Logic system

We will name this system FRP (for Fair Reactive Programming)

Types of FRP

$$\mathcal{F} ::= \mathcal{V} \mathsf{ar} \mid \mathcal{F} \lor \mathcal{F} \mid \mathcal{F} \land \mathcal{F} | \mathcal{F} \to \mathcal{F} \mid \bigcirc \mathcal{F} \mid \mu X.F \mid \nu X.F \mid 1$$

$$\Box A := \nu X.A \land \bigcirc X$$
$$\diamond A := \mu X.A \lor \bigcirc X$$
$$A \cup B := \mu X.(B \lor (A \land \bigcirc X))$$

• $t: \bigcirc A$ let •x = t in $t_2: C$

• $t: \bigcirc A$ let •x = t in $t_2: C$

Sequents	
	Θ ; $\Gamma \vdash A$

•
$$t: \bigcirc A$$
 let • $x = t$ in $t_2: C$

Sequents	
	Θ ; $\Gamma \vdash A$

Typing rules

$$\frac{; \Theta \vdash t : A}{\Theta; \Gamma \vdash \bullet t : \bigcirc A} \bigcirc_{i} \qquad \frac{\Theta; \Gamma \vdash t_{1} : \bigcirc A \qquad \Theta, x : A; \Gamma \vdash t_{2} : B}{\Theta; \Gamma \vdash \mathsf{let} \quad \bullet x = t_{1} \mathsf{ in } t_{2} : B} \bigcirc_{e}$$

Causality

Causality

$$f(s_1,\ldots,s_n,s_{n+1},\ldots)=f(s_1,\ldots,s_n,s_{n+1}',\ldots)$$
 at time n

Causality

Causality

$$f(s_1,\ldots,s_n,s_{n+1},\ldots)=f(s_1,\ldots,s_n,s_{n+1}',\ldots)$$
 at time n

 $\bigcirc A \rightarrow A$

should no be provable:

$$\mathsf{predictor1}(x:\bigcirc A) := \mathsf{let} \bullet x' = x \mathsf{ in } x'$$

Causality

Causality

$$f(s_1,\ldots,s_n,s_{n+1},\ldots)=f(s_1,\ldots,s_n,s_{n+1}',\ldots)$$
 at time n

 $\bigcirc A \rightarrow A$

should no be provable:

predictor1(
$$x : \bigcirc A$$
) := let • $x' = x$ in x'

 $\bigcirc (A \lor B) \to \bigcirc A \lor \bigcirc B$

should not be provable:

predictor2
$$(x : \bigcirc (A \lor B)) = \text{let } \bullet x' = x \text{ in case } x' \text{ of}$$

 $|\text{inl } a \to \text{inl } (\bullet a)$
 $|\text{inr } b \to \text{inr } (\bullet b)$

9/21

$A \rightarrow \bigcirc A$

would not break causality, but we refute it anyway. (accepted in Krishnaswami and Benton 2011 but rejected in Krishnaswami 2013 paper for managing space)

import $(x : A) = \bullet x$

Type of Temporal Streams on $A : \Box A$ (namely $\nu X.A \land \bigcirc X$)

Type of Temporal Streams on $A : \Box A$ (namely $\nu X.A \land \bigcirc X$)

coit app
$$f a : \Box(A \to B) \to \Box A \to \Box B :=$$

let $ha, hf = hd a, hd f$ in
let $\bullet ta, \bullet tf = tl a, tl f$ in $(hf ha, \bullet app tf ta)$

Introduction

- 2 Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka 2013)
- S Linear Temporal Logic (Kojima and Igarashi 2011)
 - 4 Kripke semantic
 - 5 Future works

Linear Temporal Logic from Kojima and Igarashi (LJ $^{\bigcirc}$) - 2011

No \diamondsuit, \square and fixpoint, only \bigcirc to deal with time

Linear Temporal Logic from Kojima and Igarashi (LJ $^{\bigcirc}$) - 2011

No \diamondsuit, \square and fixpoint, only \bigcirc to deal with time

Sequents are made of formulas indexed with a natural number

Linear Temporal Logic from Kojima and Igarashi (LJ $^{\bigcirc}$) - 2011

No \diamondsuit, \square and fixpoint, only \bigcirc to deal with time

Sequents are made of formulas indexed with a natural number

$$\frac{\Gamma^{\vec{m}}, A^{n+1} \vdash B^m}{\Gamma^{\vec{m}}, (\bigcirc A)^n \vdash B^m} \bigcirc_I \qquad \frac{\Gamma^{\vec{m}} \vdash A^{n+1}}{\Gamma^{\vec{m}} \vdash (\bigcirc A)^n} \bigcirc_r$$

√-rule

$$\frac{\Gamma^{\vec{m}}, A^n \vdash C^m \quad \Gamma^{\vec{m}}, B^n \vdash C^m \quad n \leq m}{\Gamma^{\vec{m}}, (A \lor B)^n \vdash C^m} \lor_I$$

\lor -rule

$$\frac{\Gamma^{\vec{m}}, A^n \vdash C^m \quad \Gamma^{\vec{m}}, B^n \vdash C^m \qquad n \leq m}{\Gamma^{\vec{m}}, (A \lor B)^n \vdash C^m} \lor_I$$

Thanks to the side condition, $\bigcirc(A \lor B) \to (\bigcirc A \lor \bigcirc B)$ is not provable in the system.

Same sequents than $\mathsf{LJ}^\bigcirc.$

Same sequents than
$$LJ^{\bigcirc}$$

Additional side conditions:

$$\frac{\Gamma^{\vec{m}}, A^n \vdash C^m \quad \Gamma^{\vec{m}}, B^n \vdash C^m \quad n \le m, \vec{m}}{\Gamma^{\vec{m}}, (A \lor B)^n \vdash C^m} \lor_I$$
$$\frac{\Gamma^{\vec{m}}, A^n \vdash B^n \quad n \le \vec{m}}{\Gamma^{\vec{m}} \vdash (A \to B)^n} \to_r$$

<ロト <回ト < 言ト < 言ト < 言ト 言 の Q (* 15 / 21

Same sequents than
$$LJ^{\bigcirc}$$

Additional side conditions:

$$\frac{\Gamma^{\vec{m}}, A^n \vdash C^m \quad \Gamma^{\vec{m}}, B^n \vdash C^m \quad n \le m, \vec{m}}{\Gamma^{\vec{m}}, (A \lor B)^n \vdash C^m} \lor_I$$

$$\frac{\Gamma^{\vec{m}}, A^n \vdash B^n \quad n \leq \vec{m}}{\Gamma^{\vec{m}} \vdash (A \to B)^n} \to_r$$

 μ and $\nu\text{-}{\rm free}$ FRP is provably equivalent to ${\rm FRP}^{\bigcirc}.$

Same sequents than
$$LJ^{\bigcirc}$$

Additional side conditions:

$$\frac{\Gamma^{\vec{m}}, A^n \vdash C^m \qquad \Gamma^{\vec{m}}, B^n \vdash C^m \qquad n \le m, \vec{m}}{\Gamma^{\vec{m}}, (A \lor B)^n \vdash C^m} \lor_I$$

$$\frac{\Gamma^{\vec{m}}, A^n \vdash B^n \quad n \leq \vec{m}}{\Gamma^{\vec{m}} \vdash (A \to B)^n} \to_r$$

 μ and ν -free FRP is provably equivalent to FRP^O.

 $\mathsf{FRP} \nvDash (\bigcirc A \to \bigcirc B) \to \bigcirc (A \to B)$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

- 2 Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka 2013)
- 3 Linear Temporal Logic (Kojima and Igarashi 2011)
- 4 Kripke semantic
- 5 Future works

IM-frame

Quadruplet (W, \leq, R, \Vdash) such that :

IM-frame

Quadruplet (W, \leq, R, \Vdash) such that :

```
W is a non-empty set,
```

IM-frame

Quadruplet (W, \leq, R, \Vdash) such that :

W is a non-empty set,

 \leq is a partial order on W,
Quadruplet (W, \leq, R, \Vdash) such that :

W is a non-empty set,

 \leq is a partial order on W,

R is a binary relation on W,

Quadruplet (W, \leq, R, \Vdash) such that :

W is a non-empty set,

 \leq is a partial order on W,

R is a binary relation on W,

 \Vdash is a relation between elements of W and propositionnal variables

Quadruplet (W, \leq, R, \Vdash) such that :

W is a non-empty set,

 \leq is a partial order on W,

R is a binary relation on W,

 \Vdash is a relation between elements of W and propositionnal variables

Interpretation of formulas

$$w \Vdash A \to B \Leftrightarrow (\forall w' \ge w, (w' \Vdash A) \Rightarrow (w' \Vdash B))$$

Quadruplet (W, \leq, R, \Vdash) such that :

W is a non-empty set,

 \leq is a partial order on W,

R is a binary relation on W,

 \Vdash is a relation between elements of W and propositionnal variables

Interpretation of formulas

$$w \Vdash A \to B \Leftrightarrow (\forall w' \ge w, (w' \Vdash A) \Rightarrow (w' \Vdash B))$$
$$w \Vdash \bigcirc A \Leftrightarrow (\forall v, w \mathrel{\mathsf{R}} v \Rightarrow v \Vdash A)$$

Correctness and Completness

Two axioms: axiom 1:

$$(\leq, \mathsf{R}, \leq) = \mathsf{R}$$

axiom 2:

 $\forall w, v, w \ \mathsf{R} \ v \to (\exists w', w \le w' \ \mathsf{and} \ \forall u, (w' \ \mathsf{R} \ u) \Leftrightarrow (v \le u)$

Correctness and Completness

Two axioms: axiom 1:

$$(\leq, \mathsf{R}, \leq) = \mathsf{R}$$

axiom 2:

$$\forall w, v, w \ \mathsf{R} \ v \to (\exists w', w \le w' \ \mathsf{and} \ \forall u, (w' \ \mathsf{R} \ u) \Leftrightarrow (v \le u)$$

Correctness and Completness for LJ^{\bigcirc} (Kojima and Igarashi - 2011) IM-frame together with axiom 1 and 2 are correct and complete relatively to LJ^{\bigcirc} .

Correctness and Completness

Two axioms: axiom 1:

$$(\leq, \mathsf{R}, \leq) = \mathsf{R}$$

axiom 2:

$$\forall w, v, w \mathrel{\mathsf{R}} v \to (\exists w', w \le w' \text{ and } \forall u, (w' \mathrel{\mathsf{R}} u) \Leftrightarrow (v \le u)$$

Correctness and Completness for LJ^{\bigcirc} (Kojima and Igarashi - 2011) IM-frame together with axiom 1 and 2 are correct and complete relatively to LJ^{\bigcirc} .

Correctnness and Completness for FRP^{\bigcirc}

IM-frame satisfying axiom 1 are correct and complete relatively to FRP^{\bigcirc} .

Kripke models

Introduction

- 2 Fair Reactive Programming (Cave, Ferreira, Panangaden and Pientka 2013)
- 3 Linear Temporal Logic (Kojima and Igarashi 2011)
- 4 Kripke semantic
- 5 Future works

Extending our results to full FRP (with fixpoints)

Extending our results to full FRP (with fixpoints)

Consider a classical setting for FRP ($\lambda \mu - calculus$ from Parigot)