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t. The theory of games is a prominent tool in the 
ontrollersynthesis problem. ω-regular games o�er a 
lear and robust model ofspe
i�
ations, and present an alternative vision of several logi
-relatedproblems. All ω-regular 
onditions 
an be expressed by safety and live-ness 
onditions. An issue with the 
lassi
al de�nition of liveness spe
i�
a-tions is that there is usually no 
ontrol over the time spent between twoo

urren
es of the desired events. Re
ently, Chatterjee and Henzingerintrodu
ed and studied games based on a �nitary notion of liveness, forparity and Streett 
onditions. We present here faster algorithms for thesegames, as well as an improved upper bound on the memory needed forthe Streett 
ase.1 Introdu
tionGames are one of the most pra
ti
al tools to study the 
ontroller synthesisin open systems. The setting of the problem is translated into an arena,while the 
ontroller and the environment are the players that makes de-
isions based on the 
urrent state of the system and the a
tions of theiropponent. The desired behaviour of the system is given as a 
onstraintover the sequen
e of system states, usually an ω-regular 
ondition [MP92℄.The study of the resulting ω-regular games is the subje
t of a very largepart of the games theory (for example, [Tho95,AHK02℄). Although thesegames also present the advantage of giving alternate tools to solve prob-lems of model-
he
king and veri�
ation, they present some weakness inthe a
tual synthesis of 
ontrollers. ω-regular 
onditions 
an be expressedby a liveness part and a safety part. The safety part is sound in terms of
ontroller synthesis: it asks for the 
ontroller to prevent the o

urren
eof a undesirable event, as long as some other 
ondition does not 
hange.Liveness, however, is not so 
lear. The 
lassi
al de�nition asks only forthe desired event to happen eventually, without any 
onstraints on thenumber of transitions it may take as long as it is �nite. This allows morerobust spe
i�
ations, in the sense that they do not depend on the way
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a system is represented, and in one-shot liveness (rea
hability), this isperfe
tly natural: the a
tual number of transitions depends too mu
h onthe parti
ular representation we use rather than on the spe
i�
s of thesystem studied. But as soon as we 
onsider Bü
hi 
onditions, there existsbehaviours 
ompatible with these spe
i�
ations in whi
h the number oftransitions between two visits to the target set is unbounded. On �nitegraphs, one 
an always take short
uts to avoid these 
ases. But when we
onsider parity 
onditions in open systems, there are 
ases where thereis no bounded solution. Finitary 
onditions, in whi
h the unbounded be-haviours are forbidden were introdu
ed in [AH94℄. More re
ently, [BC06℄proposed a logi
 with bounds on the size of states. A fragment of this logi
express the �nitary 
onditions.In [CH06℄, Chatterjee and Henzinger introdu
ed �nitary games andstudied the 
ases of parity and Streett spe
i�
ations. Their results in-
luded determina
y for both games, as well as algorithms 
omputing thewinning regions and a study of the memory used by the 
orrespondingstrategies. The �nitary parity problem was also proved to be in NP ∩
o-NP. We present here faster algorithms for both games, based on Tur-ing redu
tions to well known games. The �nitary parity game problemis proved to be in P, with a time 
omplexity1 of c · m · n2, whereas theoriginal algorithm of [CH06℄ had a time 
omplexity of O(n2c−3 ·c ·n). The�nitary Streett algorithm is faster than the original redu
tion to �nitaryparity (O(4k · k2 · m2 · n) instead of O((n · k! · k2)2k−3 · m · k! · k3)), andyields a strategy for Eve with less memory (2k · k2 instead of k!k2).

1 n is the number of states in the graph, m is the number of transitions, c is thenumber of 
olors in a parity game, and k is the number of pairs in a Streett game.2



2 De�nitionA 2-player game is a tuple (V,E,Win) 
onsisting in a graph (E) 
ontaininga token, and a winning 
ondition Win ⊆ V ω. The token is always in oneof the states and 
an only move along the edges. The set of states V ispartitioned into Eve's states (VE , denoted by 
ir
les) and Adam's states(VA, denoted by squares). The owner of thestate 
ontaining the token 
hooses the nextstate. An in�nite play ρ = q1, q2, . . . is asequen
e of states visited by the token, re-spe
ting the edge relation: (qi, qi+1) ∈ E forall i > 0. We 
onsider only in�nite plays, byassuming that every state has at least onesu

essor. A play in Win is winning for Eve.Otherwise, it is winning for Adam. For 
om-plexity 
omputations, we will always 
all nthe total number of states, and m the totalnumber of transitions.
123
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67 8Fig. 1. A game graphIn this paper, we will only 
onsider games on �nite graphs. The samenotions exists on in�nite graphs, but our algorithm are not adapted tothem. We will now introdu
e several notions used to solve games. See[Tho95,Zie98℄ for more detailed notions and proofs.De�nition 1. A subgame of a game G = (V,E,Win) is a game de�nedon a subset V ′ of V su
h that ea
h state in V ′ has a su

essor in V ′. Theedges and the wining set are restri
tions of E and Win to V ′.The arena of a game is the graph (V,E), in
luding the partition be-tween VA and VE . A sub-arena of an arena is the arena of a subgame.Many notions about games depend only on the arena of the game, andthis allows to export these notions from a game to another, as long as theyare played on the same arena. The 
entral notion of play, in parti
ular,depends only of the arena.A strategy for Eve (resp. Adam) is a fun
tion σ from V ∗VE (resp.

V ∗VA) to V su
h that for any �nite pre�x w and any state q, there isan edge between q and σ(w.q). Informally, a strategy for player P is amethod of extending any �nite pre�x ending in a state of P . A strategy ispositional if σ depends only on the 
urrent state. It has a �nite memoryif it 
an be realized by a �nite-state transdu
er. A play is 
onsistant witha strategy σ for P if ∀i ∈ N, ρi ∈ VP ⇒ ρi+1 = σ(ρ1..i). All these notionsdepend only on the arena of the game.3



A strategy for P is winning for P if ea
h play 
onsistent with it is wonby P . The winning region of a player P in a game G, denoted by WP (G),is the set of states from where P has a winning strategy.The attra
tor of W for player P in the game G, denoted AttrGP (W ),is the set of states from whi
h P 
an ensure that the token will rea
h theset W in a �nite number of moves. It is 
omputed indu
tively as usual:
W0 = W and Wn+1 is the union of Wn, {q ∈ VP | ∃q′ ∈ Wn, (q, q′) ∈ E}and {q ∈ V | ∀q′ ∈ Wn, (q, q′) ∈ E}. The attra
tor strategy for player Pis positional, and 
onsists in always going from a state of Wn to a statein Wn−1, thus getting 
loser to W . The 
omplexity of the 
omputation ofeither the attra
tor set or the attra
tor strategy is O(m).A trap is the dual of an attra
tor, and hen
e is a set from whi
h oneof the players 
annot es
ape: A trap T ⊆ V for player P is a region su
hthat ea
h state belonging to the other player has a su

essor in T , andea
h state in VP has all its su

essors in T . Note that the 
omplementof an attra
tor is a trap for the same player, and that a trap is always asub-arena.On
e again, the notions of attra
tor and trap depends only on thearena of the game.In this paper, we will be interested in families of winning 
onditionsthat 
an be played on the same arenas.3 Parity Games3.1 Parity ConditionsA parity 
oloring p is a fun
tion that asso
iate an integer to ea
h state ofan arena A. A parity arena is an arena equipped with a parity 
oloring.All the parity games that we de�ne depend only on the parity arena theyare played on. It is thus legitimate to talk about "the weak parity gameon the arena Ap" without further pre
ision. In 
omplexity 
omputations,we will 
all c the number of 
olorsThe parity games that are usually studied are the two that follows:Weak parity games: A play is winning for Eve if the least 
olor ap-pearing in the play is even.(Classi
al) parity games: A play is winning if the least 
olor appearingin�nitely often in the play is even.In this paper, we will study another kind of parity games, 
alled �ni-tary parity. These games were introdu
ed by Chatterjee and Henzingerin [CH06℄. Intuitively, a play is winning for Eve in �nitary parity if forea
h odd 
olor that o

urs in�nitely often, a smaller even 
olor o

urs4



in�nitely often, as in 
lassi
al parity, with the added 
onstraint that thedelay between an o

urren
e of an odd 
olor and the next smaller even
olor must be ultimately bounded.The formal de�nition uses the notion of delay sequen
e of a play:De�nition 2. The delay sequen
e d(ρ) of a play ρ on a parity arena Apis de�ned as follows:� If p(ρi) is even, then d(ρ)i = 0.� If p(ρi) is odd, then d(ρ)i is the smallest j su
h that p(ρi+j) is evenand p((ρ)i+j) < p(ρi)). Note that if there are no su
h j, d(ρ)i = ∞.A play ρ on a parity arena Ap is winning for Eve in the �nitary paritygame if and only if d(ρ) is ultimately bounded. Note that, as the delayfun
tion 
an take in�nite values, "ultimately bounded" is weaker thansimply "bounded".
0 2 1(a) Unbounded loop, but no delay 1 2 0(b) Only one o

urren
e of 11 2 0(
) Winfp 6= WincpFig. 2. Example of �nitary parity gamesFigure 2 gives some examples of how these games work. In the �rstarena 2(a), Adam 
an 
ontrol the time between o

urren
es of 1, but ano

urren
e of 0 always 
omes immediately after. The delay sequen
e ismade only of 0 and 1. Thus Eve wins in the �nitary parity game. In these
ond arena 2(b), Adam 
an 
ontrol the time spent between the �rst

1 and the next 0, or even 
hoose never to go to 0. The �rst elementof the sequen
e 
an thus be as high as Adam wants, or even in�nite,but all following values will be equal to 0. Thus Eve wins in the �nitaryparity game. Noti
e that, in the weak-parity game, Adam would have5



won if the play had begun in the state 1. In the third arena 2(
), however,Adam 
an delay the time between a 1 and the next 0 as long as he wantsbefore allowing the loop to go on. Thus he 
an make the delay fun
tionunbounded and win the �nitary game. Noti
e that he would not win inthe 
lassi
al parity game.In [CH06℄, Chatterjee and Henzinger proved the following results about�nitary parity games:� Finitary parity games are determined (i.e.Winfp
A (A)∪Winfp

E (A) = A).� Eve has a positional strategy.� Adam has no �nite memory strategy.� Finitary parity games 
an be solved in time O(n2c−3 · c · n).� Finitary parity games are in NP ∩ 
o-NP.Our algorithm for �nitary games will use yet another kind of paritygames, that we 
alled repeating parity game. This games is also de�nedin terms of delay sequen
e: A play ρ is winning if the asso
iated delaysequen
e is bounded. For games on �nite arenas, it is easy to see that thebound 
an be set beforehand at n: If Eve 
annot rea
h a smaller even
olor in less than n moves, then she 
annot rea
h it at all.3.2 AlgorithmsAnother vision of the repeating parity games is to 
onsider them as weak-parity games where Adam 
an reset the set of visited states whenever hewants. The other 
onstraint, boundedness, is not really a problem for Eve,as we have seen. This intuition is formalized in the lemma 3Lemma 3. α : The winning region of Adam in the weak-parity game onan arena Ap is also winning for him in the repeating parity game onthe same arena. The attra
tor of this region is also winning for him inthis game.
β : If Eve wins everywhere in the weak-parity game on an arena Ap, thenshe wins everywhere in the repeating parity game on the same arena.Proof. α : A play is winning for Adam in the weak parity game if thesmallest 
olor visited is odd. Obviously, a smaller even 
olor 
annoto

ur later. Thus Winwp

A (A) ⊆ Winrp
A (A). The 
ase of the attra
tor issolved by the following observation: If a play ρ is winning for Adamin the repeating parity game, then ea
h play of the form w.ρ is alsowinning for him in this game. Thus AttrA(Winwp

A (A)) ⊆ Winrp
A (A) ⊓⊔6



β : An arena were Eve wins everywhere in the weak-parity game lookslike �gure 3.2. In this game, Eve needs only to play a

ording to theattra
tors' strategies whenever the token is not in one of the top-mostregions. This guarantees that in at most n moves, the token will get toan even state in the top-most regions without 
rossing a smaller odd
olor. Thus Eve also wins everywhere in the repeating parity game.
⊓⊔0AttrE(0)

2
AttrA(2)

4
AttrE(4)

6AttrA(6)no "1"s hereneither "1"s nor "3"s hereneither "1"s nor "3"s nor "5"s hereFig. 3. An arena where Eve wins everywhere in weak-parityThis lemma leads dire
tly to the following algorithm:Algorithm 1 Algorithm 
omputing the winning regions of Adam andEve for the repeating parity gameRequire: Algorithm for 
omputing the winning regions in a weak-parity gameinput A, p

B ← Arepeat
B ← B \ AttrA(Winwp

A (B, p))until Winwp
A (B, p) = ∅return B,A \ BThe termination of the algorithm 1 is guaranteed by the fa
t that inea
h "repeat" loop, B looses at least one state. This limits the number ofsu
h loops to n. As weak-parity games are solved in time c ·m, the global
omplexity of our algorithm is c · m · n.7



The validity of this algorithm 
omes from lemma 3.We will now solve �nitary games using the same kind of 
ontru
tion.Lemma 4 gives relations between the winning regions of repeating parityand �nitary parity that are very similar to the ones in lemma 3.Lemma 4. α : The winning region of Eve in the repeating parity gameon an arena Ap is also winning for her in the �nitary parity game onthe same arena. The attra
tor of this region is also winning for her inthis game.
β : If Adam wins everywhere in the repeating parity game on an arena

Ap, then he wins everywhere in the �nitary parity game on the samearena.Proof. α : A play is winning for Eve in the repeating parity game ifthe asso
iated delay fun
tion is bounded. It is winning for her inthe �nitary parity game if this fun
tion is ultimately bounded. ThusWinrp
E (Ap)) ⊆ Winfp

E (Ap). As the �nitary parity 
ondition is pre�xindependent, we 
an 
on
lude that AttrE(Winrp
E (Ap)) ⊆ Winfp

E (Ap)
⊓⊔

β : The se
ond part of the proof is more 
omplex. Adam has a strategy
π that is winning everywhere in repeating parity. From it, we derivethe following strategy π′:1. Set b to 12. Play the strategy π with initial memory from the state where thetoken is now until there is a sequen
e with an odd priority followedby b moves without seeing a smaller even priority.3. In
rement b4. Go ba
k to step 2.It is immediate that if a play 
onsistent with this strategy behave insu
h a way that Adam goes in�nitely often through the loop, then itis winning for Adam in the �nitary parity game. The only point that
auses trouble is the step 2. But a play that would get stu
k in thisstate would be a play 
onsistent with π where for ea
h o

urren
e ofan odd 
olor, there is an o

urren
e of a smaller even 
olor in the next
b moves. This would be a 
ontradi
tion to the hypothesis that π iswinning for Adam. Thus π′ is winning for Adam in the �nitary paritygame. ⊓⊔As for repeating parity, we use this lemma to build an algorithm solv-ing �nitary parity games. 8



Algorithm 2 Algorithm 
omputing the winning regions of Adam andEve for the �nitary parity gameRequire: Algorithm for 
omputing the winning regions in a repeating parity gameinput A, p

B ← Arepeat
B ← B \ AttrE(Winrp

E (B, p))until Winrp
E (B, p) = ∅return A \ B,BAs in Algorithm 1, the termination and 
omplexity are guaranteedby the fa
t that the repeat loop removes one state from B. Likewise, the
omplexity is n times the 
omplexity of the former algorithm, or c ·m ·n2.This algorithm is thus mu
h faster than the one of [CH06℄, and putsthe problem in P instead of NP ∩ 
o-NP.4 Streett Games4.1 Streett ConditionsA Streett 
oloring s over an arena A is a set of pairs of sets of states of A.The �rst element of a pair is 
alled a "request", and the se
ond elementis the 
orresponding "response". A Streett arena As is an arena equippedwith a Streett 
oloring. The rank of a Streett arena is the number ofpairs that 
onstitutes the Streett 
oloring. The rank of a Streett game isthe rank of its arena. In 
omplexity 
omputation, the rank of the Streett
ondition will be denoted by k. As was the 
ase for parity games, all thevariants of Streett games that we will de�ne depends only on the Streettarena they are played on. Again, there are two 
lassi
al versions of theStreett games:Weak Streett games: A play is winning for Eve if for ea
h request thato

ur in the play, the 
orresponding response also o

urs.(Classi
al) Streett games: A play is winning for Eve if for ea
h re-quest o

urring in�nitely often in the play, the 
orresponding responsealso o

urs in�nitely often.Chatterjee and Henzinger also introdu
ed a �nitary version of theStreett games in [CH06℄. Intuitively, a play is winning for Eve in �nitaryStreett if for ea
h request that o

urs in�nitely often, the 
orrespondingresponse o

urs in�nitely often, as in 
lassi
al Streett, with the added
onstraint that the delay between an o

urren
e of a request and the next
orresponding response must be ultimately bounded.9



The formal de�nition also uses a notion of delay sequen
e derived froma play:De�nition 5. The delay sequen
e d(ρ) of a play ρ on a Streett arena Apis de�ned as follows:� If ρi does not belong to a request, then d(ρ)i = 0.� If ρi belong to the request of only one pair, then d(ρ)i is the smallest jsu
h that ρi+j belong to the 
orresponding response. Note that if thereare no su
h j, d(ρ)i = ∞.� If ρi belong to several requests, then d(ρ)i is the maximum of the values
omputed with the method above for ea
h request.A play ρ on a Streett arena Ap is winning for Eve in the �nitary Streettgame if and only if d(ρ) is ultimately bounded.In [CH06℄, Chatterjee and Henzinger proved the following results about�nitary Streett games:� Finitary Streett games are determined.� Eve has a strategy that uses k! · k2 memory states.� Adam has no �nite memory strategy.� Finitary Streett games 
an be solved in time O((n·k!·k2)2k−3·m·k!·k3).As for parity games, we will use another kind of Streett games in ouralgorithm, 
alled request-response games. These games were de�ned andstudied by Wallmeier, Thomas and Hutten in [WHT03℄. Even if thesegames do not bear the name Streett, they are de�ned by a Streett arena:A play is winning in a request-response game if its delay sequen
etakes only �nite values, i.e. if for ea
h o

urren
e of a request, there islater an o

urren
e of a 
orresponding response.We will use these games in the �nitary Streett algorithm in the sameway we used repeating parity games in the �nitary parity algorithm. Here,however, there is no link with the weak-Streett games.[WHT03℄ presents an algorithm to solve request-response games. It isbased on a redu
tion to generalized Bü
hi games. The time 
omplexity oftheir algorithm is O(4k · k2 · m2). The strategy for Eve that derives fromthis algorithm has the property that in ea
h play 
onsistent with it, ea
hrequest is mat
hed by a 
orresponding response in the next k · n moves.This last remark is very important for our purposes, as the de�nition ofrequest-response games in [WHT03℄ asks only for �nite values of the delaysequen
e, not ne
essarily bounded.There is a lemma that gives the relation between �nitary Streett gamesand request-response games: 10



Lemma 6. α : The winning region of Eve in the request-response gameon an arena As is also winning for her in the �nitary Streett game onthe same arena. The attra
tor of this region is also winning for her inthis game.
β : If Adam wins everywhere in the request-response game on an arena

As, then he wins everywhere in the �nitary Streett game on the samearena.Proof. α : In the winning region of Eve in the request-response game, she
an use the strategy derived from [WHT03℄. It guarantees that ea
hrequest is mat
hed by a 
orresponding response in the next k ·n moves,and thus that the delay sequen
e is bounded. Thus Winrr
E (As)) ⊆Winfs

E (Ap). As the �nitary 
ondition is pre�x-independent, we getAttrE(Winrr
E (As)) ⊆ Winfs

E (Ap). ⊓⊔
β : The 
onstru
tion of a winning strategy for Adam for �nitary Streettfrom a strategy winning everywhere for him in request-response is 
loseto the one used to build a winning strategy for him in �nitary parity.If π is a winning strategy for Adam in the request-response game, thestrategy π′ is de�ned by:1. Set b to 12. Play the strategy π with initial memory from the state where thetoken is now until there is a sequen
e with a request followed by bmoves without seeing the 
orresponding response.3. In
rement b4. Go ba
k to step 2.On
e again a play that does not get stu
k in step 2 is 
learly winningfor Adam. And a play that would get stu
k in the step 2 would bea play where ea
h request is followed by a response, in 
ontradi
tionwith the fa
t that π is winning in request-response. Thus π′ is winningfor Adam everywhere in As. ⊓⊔The algorithm obtained from this lemma is :As in the other algorithms, the number of loops is bounded by thenumber of states in the arena. The 
omplexity is n times the 
omplexityof the algorithm for request-response games, or O(4k · k2 · m2 · n)Another result that 
omes from this algorithm 
on
erns the memorythat Eve needs to win. Her strategy is made only on attra
tors, and of thestrategies for request-response games, depending only of the position ofthe token in the arena. The strategy for a request-response game need k·2k,and the attra
tor strategy is positional. Thus Eve needs only k ·2k memorystates to win a �nitary Streett game on her winning region. This improve11



Algorithm 3 Algorithm 
omputing the winning regions of Adam andEve for the �nitary Streett gameRequire: Algorithm 
omputing the winning regions in a request-response gameinput A, p

B ← Arepeat
B ← B \ AttrE(Winrr

E (B, p))until Winrr
E (B, p) = ∅return A \ B,Bthe result of [CH06℄, whi
h proved that Eve needed only k! · k2 memorystates, from the index of appearan
e re
ords used in the redu
tion to�nitary parity games ([BLV96℄). Interrestingly, the weak-Streett strategiesfor Eve need less memory, with 2k([NSW02℄), while 
lassi
al Streett gamesneed k! memory states ([DJW97,Hor05℄).5 Con
lusion and DevelopmentsOur algorithms for �nitary parity and Streett games are mu
h faster thanthe version given in the original paper by Chatterjee and Henzinger. The�nitary parity problem, in parti
ular, was proved to be in P, improving theformer result of NP ∩ 
o-NP. The algorithm for Streett game represents agood improvement in time 
omplexity, and yields more 
ompa
t strategiesfor Eve. We had hoped to get a pro
edure to solve �nitary Streett gameswith a pro
edure using weak-Streett games, whi
h would have put thisproblem in PSPACE. However, if there is su
h a pro
edure, it eluded us sofar.Our obje
tive in this �eld of resear
h are an extension of the notionof �nitary games to Muller 
onditions, and the study of links betweenthese games and a fragment of the ωBS-regular logi
 of Bojan
zyk andCol
ombet.Referen
es[AH94℄ R. Alur and T.A. Henzinger. Finitary Fairness In pro
eedings of Logi
 InComputer S
ien
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