
Faster Algorithms for Finitary Games⋆Florian HornLiafa, Université Paris 7, Case 7014, 2 plae Jussieu, F-75251 Paris 5, Frane.e-mail: horn�liafa.jussieu.frAbstrat. The theory of games is a prominent tool in the ontrollersynthesis problem. ω-regular games o�er a lear and robust model ofspei�ations, and present an alternative vision of several logi-relatedproblems. All ω-regular onditions an be expressed by safety and live-ness onditions. An issue with the lassial de�nition of liveness spei�a-tions is that there is usually no ontrol over the time spent between twoourrenes of the desired events. Reently, Chatterjee and Henzingerintrodued and studied games based on a �nitary notion of liveness, forparity and Streett onditions. We present here faster algorithms for thesegames, as well as an improved upper bound on the memory needed forthe Streett ase.1 IntrodutionGames are one of the most pratial tools to study the ontroller synthesisin open systems. The setting of the problem is translated into an arena,while the ontroller and the environment are the players that makes de-isions based on the urrent state of the system and the ations of theiropponent. The desired behaviour of the system is given as a onstraintover the sequene of system states, usually an ω-regular ondition [MP92℄.The study of the resulting ω-regular games is the subjet of a very largepart of the games theory (for example, [Tho95,AHK02℄). Although thesegames also present the advantage of giving alternate tools to solve prob-lems of model-heking and veri�ation, they present some weakness inthe atual synthesis of ontrollers. ω-regular onditions an be expressedby a liveness part and a safety part. The safety part is sound in terms ofontroller synthesis: it asks for the ontroller to prevent the ourreneof a undesirable event, as long as some other ondition does not hange.Liveness, however, is not so lear. The lassial de�nition asks only forthe desired event to happen eventually, without any onstraints on thenumber of transitions it may take as long as it is �nite. This allows morerobust spei�ations, in the sense that they do not depend on the way
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a system is represented, and in one-shot liveness (reahability), this isperfetly natural: the atual number of transitions depends too muh onthe partiular representation we use rather than on the spei�s of thesystem studied. But as soon as we onsider Bühi onditions, there existsbehaviours ompatible with these spei�ations in whih the number oftransitions between two visits to the target set is unbounded. On �nitegraphs, one an always take shortuts to avoid these ases. But when weonsider parity onditions in open systems, there are ases where thereis no bounded solution. Finitary onditions, in whih the unbounded be-haviours are forbidden were introdued in [AH94℄. More reently, [BC06℄proposed a logi with bounds on the size of states. A fragment of this logiexpress the �nitary onditions.In [CH06℄, Chatterjee and Henzinger introdued �nitary games andstudied the ases of parity and Streett spei�ations. Their results in-luded determinay for both games, as well as algorithms omputing thewinning regions and a study of the memory used by the orrespondingstrategies. The �nitary parity problem was also proved to be in NP ∩o-NP. We present here faster algorithms for both games, based on Tur-ing redutions to well known games. The �nitary parity game problemis proved to be in P, with a time omplexity1 of c · m · n2, whereas theoriginal algorithm of [CH06℄ had a time omplexity of O(n2c−3 ·c ·n). The�nitary Streett algorithm is faster than the original redution to �nitaryparity (O(4k · k2 · m2 · n) instead of O((n · k! · k2)2k−3 · m · k! · k3)), andyields a strategy for Eve with less memory (2k · k2 instead of k!k2).

1 n is the number of states in the graph, m is the number of transitions, c is thenumber of olors in a parity game, and k is the number of pairs in a Streett game.2



2 De�nitionA 2-player game is a tuple (V,E,Win) onsisting in a graph (E) ontaininga token, and a winning ondition Win ⊆ V ω. The token is always in oneof the states and an only move along the edges. The set of states V ispartitioned into Eve's states (VE , denoted by irles) and Adam's states(VA, denoted by squares). The owner of thestate ontaining the token hooses the nextstate. An in�nite play ρ = q1, q2, . . . is asequene of states visited by the token, re-speting the edge relation: (qi, qi+1) ∈ E forall i > 0. We onsider only in�nite plays, byassuming that every state has at least onesuessor. A play in Win is winning for Eve.Otherwise, it is winning for Adam. For om-plexity omputations, we will always all nthe total number of states, and m the totalnumber of transitions.
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67 8Fig. 1. A game graphIn this paper, we will only onsider games on �nite graphs. The samenotions exists on in�nite graphs, but our algorithm are not adapted tothem. We will now introdue several notions used to solve games. See[Tho95,Zie98℄ for more detailed notions and proofs.De�nition 1. A subgame of a game G = (V,E,Win) is a game de�nedon a subset V ′ of V suh that eah state in V ′ has a suessor in V ′. Theedges and the wining set are restritions of E and Win to V ′.The arena of a game is the graph (V,E), inluding the partition be-tween VA and VE . A sub-arena of an arena is the arena of a subgame.Many notions about games depend only on the arena of the game, andthis allows to export these notions from a game to another, as long as theyare played on the same arena. The entral notion of play, in partiular,depends only of the arena.A strategy for Eve (resp. Adam) is a funtion σ from V ∗VE (resp.

V ∗VA) to V suh that for any �nite pre�x w and any state q, there isan edge between q and σ(w.q). Informally, a strategy for player P is amethod of extending any �nite pre�x ending in a state of P . A strategy ispositional if σ depends only on the urrent state. It has a �nite memoryif it an be realized by a �nite-state transduer. A play is onsistant witha strategy σ for P if ∀i ∈ N, ρi ∈ VP ⇒ ρi+1 = σ(ρ1..i). All these notionsdepend only on the arena of the game.3



A strategy for P is winning for P if eah play onsistent with it is wonby P . The winning region of a player P in a game G, denoted by WP (G),is the set of states from where P has a winning strategy.The attrator of W for player P in the game G, denoted AttrGP (W ),is the set of states from whih P an ensure that the token will reah theset W in a �nite number of moves. It is omputed indutively as usual:
W0 = W and Wn+1 is the union of Wn, {q ∈ VP | ∃q′ ∈ Wn, (q, q′) ∈ E}and {q ∈ V | ∀q′ ∈ Wn, (q, q′) ∈ E}. The attrator strategy for player Pis positional, and onsists in always going from a state of Wn to a statein Wn−1, thus getting loser to W . The omplexity of the omputation ofeither the attrator set or the attrator strategy is O(m).A trap is the dual of an attrator, and hene is a set from whih oneof the players annot esape: A trap T ⊆ V for player P is a region suhthat eah state belonging to the other player has a suessor in T , andeah state in VP has all its suessors in T . Note that the omplementof an attrator is a trap for the same player, and that a trap is always asub-arena.One again, the notions of attrator and trap depends only on thearena of the game.In this paper, we will be interested in families of winning onditionsthat an be played on the same arenas.3 Parity Games3.1 Parity ConditionsA parity oloring p is a funtion that assoiate an integer to eah state ofan arena A. A parity arena is an arena equipped with a parity oloring.All the parity games that we de�ne depend only on the parity arena theyare played on. It is thus legitimate to talk about "the weak parity gameon the arena Ap" without further preision. In omplexity omputations,we will all c the number of olorsThe parity games that are usually studied are the two that follows:Weak parity games: A play is winning for Eve if the least olor ap-pearing in the play is even.(Classial) parity games: A play is winning if the least olor appearingin�nitely often in the play is even.In this paper, we will study another kind of parity games, alled �ni-tary parity. These games were introdued by Chatterjee and Henzingerin [CH06℄. Intuitively, a play is winning for Eve in �nitary parity if foreah odd olor that ours in�nitely often, a smaller even olor ours4



in�nitely often, as in lassial parity, with the added onstraint that thedelay between an ourrene of an odd olor and the next smaller evenolor must be ultimately bounded.The formal de�nition uses the notion of delay sequene of a play:De�nition 2. The delay sequene d(ρ) of a play ρ on a parity arena Apis de�ned as follows:� If p(ρi) is even, then d(ρ)i = 0.� If p(ρi) is odd, then d(ρ)i is the smallest j suh that p(ρi+j) is evenand p((ρ)i+j) < p(ρi)). Note that if there are no suh j, d(ρ)i = ∞.A play ρ on a parity arena Ap is winning for Eve in the �nitary paritygame if and only if d(ρ) is ultimately bounded. Note that, as the delayfuntion an take in�nite values, "ultimately bounded" is weaker thansimply "bounded".
0 2 1(a) Unbounded loop, but no delay 1 2 0(b) Only one ourrene of 11 2 0() Winfp 6= WincpFig. 2. Example of �nitary parity gamesFigure 2 gives some examples of how these games work. In the �rstarena 2(a), Adam an ontrol the time between ourrenes of 1, but anourrene of 0 always omes immediately after. The delay sequene ismade only of 0 and 1. Thus Eve wins in the �nitary parity game. In theseond arena 2(b), Adam an ontrol the time spent between the �rst

1 and the next 0, or even hoose never to go to 0. The �rst elementof the sequene an thus be as high as Adam wants, or even in�nite,but all following values will be equal to 0. Thus Eve wins in the �nitaryparity game. Notie that, in the weak-parity game, Adam would have5



won if the play had begun in the state 1. In the third arena 2(), however,Adam an delay the time between a 1 and the next 0 as long as he wantsbefore allowing the loop to go on. Thus he an make the delay funtionunbounded and win the �nitary game. Notie that he would not win inthe lassial parity game.In [CH06℄, Chatterjee and Henzinger proved the following results about�nitary parity games:� Finitary parity games are determined (i.e.Winfp
A (A)∪Winfp

E (A) = A).� Eve has a positional strategy.� Adam has no �nite memory strategy.� Finitary parity games an be solved in time O(n2c−3 · c · n).� Finitary parity games are in NP ∩ o-NP.Our algorithm for �nitary games will use yet another kind of paritygames, that we alled repeating parity game. This games is also de�nedin terms of delay sequene: A play ρ is winning if the assoiated delaysequene is bounded. For games on �nite arenas, it is easy to see that thebound an be set beforehand at n: If Eve annot reah a smaller evenolor in less than n moves, then she annot reah it at all.3.2 AlgorithmsAnother vision of the repeating parity games is to onsider them as weak-parity games where Adam an reset the set of visited states whenever hewants. The other onstraint, boundedness, is not really a problem for Eve,as we have seen. This intuition is formalized in the lemma 3Lemma 3. α : The winning region of Adam in the weak-parity game onan arena Ap is also winning for him in the repeating parity game onthe same arena. The attrator of this region is also winning for him inthis game.
β : If Eve wins everywhere in the weak-parity game on an arena Ap, thenshe wins everywhere in the repeating parity game on the same arena.Proof. α : A play is winning for Adam in the weak parity game if thesmallest olor visited is odd. Obviously, a smaller even olor annotour later. Thus Winwp

A (A) ⊆ Winrp
A (A). The ase of the attrator issolved by the following observation: If a play ρ is winning for Adamin the repeating parity game, then eah play of the form w.ρ is alsowinning for him in this game. Thus AttrA(Winwp

A (A)) ⊆ Winrp
A (A) ⊓⊔6



β : An arena were Eve wins everywhere in the weak-parity game lookslike �gure 3.2. In this game, Eve needs only to play aording to theattrators' strategies whenever the token is not in one of the top-mostregions. This guarantees that in at most n moves, the token will get toan even state in the top-most regions without rossing a smaller oddolor. Thus Eve also wins everywhere in the repeating parity game.
⊓⊔0AttrE(0)

2
AttrA(2)

4
AttrE(4)

6AttrA(6)no "1"s hereneither "1"s nor "3"s hereneither "1"s nor "3"s nor "5"s hereFig. 3. An arena where Eve wins everywhere in weak-parityThis lemma leads diretly to the following algorithm:Algorithm 1 Algorithm omputing the winning regions of Adam andEve for the repeating parity gameRequire: Algorithm for omputing the winning regions in a weak-parity gameinput A, p

B ← Arepeat
B ← B \ AttrA(Winwp

A (B, p))until Winwp
A (B, p) = ∅return B,A \ BThe termination of the algorithm 1 is guaranteed by the fat that ineah "repeat" loop, B looses at least one state. This limits the number ofsuh loops to n. As weak-parity games are solved in time c ·m, the globalomplexity of our algorithm is c · m · n.7



The validity of this algorithm omes from lemma 3.We will now solve �nitary games using the same kind of ontrution.Lemma 4 gives relations between the winning regions of repeating parityand �nitary parity that are very similar to the ones in lemma 3.Lemma 4. α : The winning region of Eve in the repeating parity gameon an arena Ap is also winning for her in the �nitary parity game onthe same arena. The attrator of this region is also winning for her inthis game.
β : If Adam wins everywhere in the repeating parity game on an arena

Ap, then he wins everywhere in the �nitary parity game on the samearena.Proof. α : A play is winning for Eve in the repeating parity game ifthe assoiated delay funtion is bounded. It is winning for her inthe �nitary parity game if this funtion is ultimately bounded. ThusWinrp
E (Ap)) ⊆ Winfp

E (Ap). As the �nitary parity ondition is pre�xindependent, we an onlude that AttrE(Winrp
E (Ap)) ⊆ Winfp

E (Ap)
⊓⊔

β : The seond part of the proof is more omplex. Adam has a strategy
π that is winning everywhere in repeating parity. From it, we derivethe following strategy π′:1. Set b to 12. Play the strategy π with initial memory from the state where thetoken is now until there is a sequene with an odd priority followedby b moves without seeing a smaller even priority.3. Inrement b4. Go bak to step 2.It is immediate that if a play onsistent with this strategy behave insuh a way that Adam goes in�nitely often through the loop, then itis winning for Adam in the �nitary parity game. The only point thatauses trouble is the step 2. But a play that would get stuk in thisstate would be a play onsistent with π where for eah ourrene ofan odd olor, there is an ourrene of a smaller even olor in the next
b moves. This would be a ontradition to the hypothesis that π iswinning for Adam. Thus π′ is winning for Adam in the �nitary paritygame. ⊓⊔As for repeating parity, we use this lemma to build an algorithm solv-ing �nitary parity games. 8



Algorithm 2 Algorithm omputing the winning regions of Adam andEve for the �nitary parity gameRequire: Algorithm for omputing the winning regions in a repeating parity gameinput A, p

B ← Arepeat
B ← B \ AttrE(Winrp

E (B, p))until Winrp
E (B, p) = ∅return A \ B,BAs in Algorithm 1, the termination and omplexity are guaranteedby the fat that the repeat loop removes one state from B. Likewise, theomplexity is n times the omplexity of the former algorithm, or c ·m ·n2.This algorithm is thus muh faster than the one of [CH06℄, and putsthe problem in P instead of NP ∩ o-NP.4 Streett Games4.1 Streett ConditionsA Streett oloring s over an arena A is a set of pairs of sets of states of A.The �rst element of a pair is alled a "request", and the seond elementis the orresponding "response". A Streett arena As is an arena equippedwith a Streett oloring. The rank of a Streett arena is the number ofpairs that onstitutes the Streett oloring. The rank of a Streett game isthe rank of its arena. In omplexity omputation, the rank of the Streettondition will be denoted by k. As was the ase for parity games, all thevariants of Streett games that we will de�ne depends only on the Streettarena they are played on. Again, there are two lassial versions of theStreett games:Weak Streett games: A play is winning for Eve if for eah request thatour in the play, the orresponding response also ours.(Classial) Streett games: A play is winning for Eve if for eah re-quest ourring in�nitely often in the play, the orresponding responsealso ours in�nitely often.Chatterjee and Henzinger also introdued a �nitary version of theStreett games in [CH06℄. Intuitively, a play is winning for Eve in �nitaryStreett if for eah request that ours in�nitely often, the orrespondingresponse ours in�nitely often, as in lassial Streett, with the addedonstraint that the delay between an ourrene of a request and the nextorresponding response must be ultimately bounded.9



The formal de�nition also uses a notion of delay sequene derived froma play:De�nition 5. The delay sequene d(ρ) of a play ρ on a Streett arena Apis de�ned as follows:� If ρi does not belong to a request, then d(ρ)i = 0.� If ρi belong to the request of only one pair, then d(ρ)i is the smallest jsuh that ρi+j belong to the orresponding response. Note that if thereare no suh j, d(ρ)i = ∞.� If ρi belong to several requests, then d(ρ)i is the maximum of the valuesomputed with the method above for eah request.A play ρ on a Streett arena Ap is winning for Eve in the �nitary Streettgame if and only if d(ρ) is ultimately bounded.In [CH06℄, Chatterjee and Henzinger proved the following results about�nitary Streett games:� Finitary Streett games are determined.� Eve has a strategy that uses k! · k2 memory states.� Adam has no �nite memory strategy.� Finitary Streett games an be solved in time O((n·k!·k2)2k−3·m·k!·k3).As for parity games, we will use another kind of Streett games in ouralgorithm, alled request-response games. These games were de�ned andstudied by Wallmeier, Thomas and Hutten in [WHT03℄. Even if thesegames do not bear the name Streett, they are de�ned by a Streett arena:A play is winning in a request-response game if its delay sequenetakes only �nite values, i.e. if for eah ourrene of a request, there islater an ourrene of a orresponding response.We will use these games in the �nitary Streett algorithm in the sameway we used repeating parity games in the �nitary parity algorithm. Here,however, there is no link with the weak-Streett games.[WHT03℄ presents an algorithm to solve request-response games. It isbased on a redution to generalized Bühi games. The time omplexity oftheir algorithm is O(4k · k2 · m2). The strategy for Eve that derives fromthis algorithm has the property that in eah play onsistent with it, eahrequest is mathed by a orresponding response in the next k · n moves.This last remark is very important for our purposes, as the de�nition ofrequest-response games in [WHT03℄ asks only for �nite values of the delaysequene, not neessarily bounded.There is a lemma that gives the relation between �nitary Streett gamesand request-response games: 10



Lemma 6. α : The winning region of Eve in the request-response gameon an arena As is also winning for her in the �nitary Streett game onthe same arena. The attrator of this region is also winning for her inthis game.
β : If Adam wins everywhere in the request-response game on an arena

As, then he wins everywhere in the �nitary Streett game on the samearena.Proof. α : In the winning region of Eve in the request-response game, shean use the strategy derived from [WHT03℄. It guarantees that eahrequest is mathed by a orresponding response in the next k ·n moves,and thus that the delay sequene is bounded. Thus Winrr
E (As)) ⊆Winfs

E (Ap). As the �nitary ondition is pre�x-independent, we getAttrE(Winrr
E (As)) ⊆ Winfs

E (Ap). ⊓⊔
β : The onstrution of a winning strategy for Adam for �nitary Streettfrom a strategy winning everywhere for him in request-response is loseto the one used to build a winning strategy for him in �nitary parity.If π is a winning strategy for Adam in the request-response game, thestrategy π′ is de�ned by:1. Set b to 12. Play the strategy π with initial memory from the state where thetoken is now until there is a sequene with a request followed by bmoves without seeing the orresponding response.3. Inrement b4. Go bak to step 2.One again a play that does not get stuk in step 2 is learly winningfor Adam. And a play that would get stuk in the step 2 would bea play where eah request is followed by a response, in ontraditionwith the fat that π is winning in request-response. Thus π′ is winningfor Adam everywhere in As. ⊓⊔The algorithm obtained from this lemma is :As in the other algorithms, the number of loops is bounded by thenumber of states in the arena. The omplexity is n times the omplexityof the algorithm for request-response games, or O(4k · k2 · m2 · n)Another result that omes from this algorithm onerns the memorythat Eve needs to win. Her strategy is made only on attrators, and of thestrategies for request-response games, depending only of the position ofthe token in the arena. The strategy for a request-response game need k·2k,and the attrator strategy is positional. Thus Eve needs only k ·2k memorystates to win a �nitary Streett game on her winning region. This improve11



Algorithm 3 Algorithm omputing the winning regions of Adam andEve for the �nitary Streett gameRequire: Algorithm omputing the winning regions in a request-response gameinput A, p

B ← Arepeat
B ← B \ AttrE(Winrr

E (B, p))until Winrr
E (B, p) = ∅return A \ B,Bthe result of [CH06℄, whih proved that Eve needed only k! · k2 memorystates, from the index of appearane reords used in the redution to�nitary parity games ([BLV96℄). Interrestingly, the weak-Streett strategiesfor Eve need less memory, with 2k([NSW02℄), while lassial Streett gamesneed k! memory states ([DJW97,Hor05℄).5 Conlusion and DevelopmentsOur algorithms for �nitary parity and Streett games are muh faster thanthe version given in the original paper by Chatterjee and Henzinger. The�nitary parity problem, in partiular, was proved to be in P, improving theformer result of NP ∩ o-NP. The algorithm for Streett game represents agood improvement in time omplexity, and yields more ompat strategiesfor Eve. We had hoped to get a proedure to solve �nitary Streett gameswith a proedure using weak-Streett games, whih would have put thisproblem in PSPACE. However, if there is suh a proedure, it eluded us sofar.Our objetive in this �eld of researh are an extension of the notionof �nitary games to Muller onditions, and the study of links betweenthese games and a fragment of the ωBS-regular logi of Bojanzyk andColombet.Referenes[AH94℄ R. Alur and T.A. Henzinger. Finitary Fairness In proeedings of Logi InComputer Siene, LICS'94, p. 52�61. IEEE Computer Soiety, 1994.[AHK02℄ R. Alur, T.A. Henzinger and O. Kupferman. Alternating-time temporallogi. In Journal of the ACM, volume 49, p.672�713. 2002.[BC06℄ M. Bojanzyk and T. Colombet Bounds in ω-regularity In proeedings ofLogi In Computer Siene, LICS'06, p. 285�296, IEEE Computer Soiety,2006. 12
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