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Abstract. The theory of games is a prominent tool in the controller
synthesis problem. w-regular games offer a clear and robust model of
specifications, and present an alternative vision of several logic-related
problems. All w-regular conditions can be expressed by safety and live-
ness conditions. An issue with the classical definition of liveness specifica-
tions is that there is usually no control over the time spent between two
occurrences of the desired events. Recently, Chatterjee and Henzinger
introduced and studied games based on a finitary notion of liveness, for
parity and Streett conditions. We present here faster algorithms for these
games, as well as an improved upper bound on the memory needed for
the Streett case.

1 Introduction

Games are one of the most practical tools to study the controller synthesis
in open systems. The setting of the problem is translated into an arena,
while the controller and the environment are the players that makes de-
cisions based on the current state of the system and the actions of their
opponent. The desired behaviour of the system is given as a constraint
over the sequence of system states, usually an w-regular condition [MP92].
The study of the resulting w-regular games is the subject of a very large
part of the games theory (for example, [Tho95,AHK02|). Although these
games also present the advantage of giving alternate tools to solve prob-
lems of model-checking and verification, they present some weakness in
the actual synthesis of controllers. w-regular conditions can be expressed
by a liveness part and a safety part. The safety part is sound in terms of
controller synthesis: it asks for the controller to prevent the occurrence
of a undesirable event, as long as some other condition does not change.
Liveness, however, is not so clear. The classical definition asks only for
the desired event to happen ewventually, without any constraints on the
number of transitions it may take as long as it is finite. This allows more
robust specifications, in the sense that they do not depend on the way
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a system is represented, and in one-shot liveness (reachability), this is
perfectly natural: the actual number of transitions depends too much on
the particular representation we use rather than on the specifics of the
system studied. But as soon as we consider Biichi conditions, there exists
behaviours compatible with these specifications in which the number of
transitions between two visits to the target set is unbounded. On finite
graphs, one can always take shortcuts to avoid these cases. But when we
consider parity conditions in open systems, there are cases where there
is no bounded solution. Finitary conditions, in which the unbounded be-
haviours are forbidden were introduced in [AH94|. More recently, [BC06]
proposed a logic with bounds on the size of states. A fragment of this logic
express the finitary conditions.

In [CHO6], Chatterjee and Henzinger introduced finitary games and
studied the cases of parity and Streett specifications. Their results in-
cluded determinacy for both games, as well as algorithms computing the
winning regions and a study of the memory used by the corresponding
strategies. The finitary parity problem was also proved to be in NP N
co-NP. We present here faster algorithms for both games, based on Tur-
ing reductions to well known games. The finitary parity game problem
is proved to be in P, with a time complexity! of ¢ - m - n?, whereas the
original algorithm of [CHO6] had a time complexity of O(n?¢=3.c-n). The
finitary Streett algorithm is faster than the original reduction to finitary
parity (O(4% - k2 - m? - n) instead of O((n - k! - k2)%73 . m - k! - k%)), and
yields a strategy for Eve with less memory (2¥ - k2 instead of k!k?).

! n is the number of states in the graph, m is the number of transitions, c is the

number of colors in a parity game, and k is the number of pairs in a Streett game.



2 Definition

A 2-player game is a tuple (V, E, Win) consisting in a graph (F) containing
a token, and a winning condition Win C V. The token is always in one
of the states and can only move along the edges. The set of states V is
partitioned into Eve’s states (Vg, denoted by circles) and Adam’s states
(V4, denoted by squares). The owner of the

state containing the token chooses the next e 0
state. An infinite play p = ¢1,¢2,... is a ‘
sequence of states visited by the token, re- 9

specting the edge relation: (¢;, gi+1) € E for
all ¢ > 0. We consider only infinite plays, by

assuming that every state has at least one
successor. A play in Win is winning for Eve. 6

Otherwise, it is winning for Adam. For com-

plexity computations, we will always call n 7 o
the total number of states, and m the total

number of transitions.

Fig. 1. A game graph

In this paper, we will only consider games on finite graphs. The same
notions exists on infinite graphs, but our algorithm are not adapted to
them. We will now introduce several notions used to solve games. See
[Tho95,Zie98| for more detailed notions and proofs.

Definition 1. A subgame of a game G = (V, E, Win) is a game defined
on a subset V' of V' such that each state in V' has a successor in V'. The
edges and the wining set are restrictions of E and Win to V'.

The arena of a game is the graph (V| E), including the partition be-
tween V4 and Vg. A sub-arena of an arena is the arena of a subgame.
Many notions about games depend only on the arena of the game, and
this allows to export these notions from a game to another, as long as they
are played on the same arena. The central notion of play, in particular,
depends only of the arena.

A strategy for Eve (resp. Adam) is a function o from V*Vg (resp.
V*V4) to V such that for any finite prefix w and any state g, there is
an edge between ¢ and o(w.q). Informally, a strategy for player P is a
method of extending any finite prefix ending in a state of P. A strategy is
positional if o depends only on the current state. It has a finite memory
if it can be realized by a finite-state transducer. A play is consistant with
a strategy o for P if Vi € N, p; € Vp = pj11 = 0(p1.;). All these notions
depend only on the arena of the game.



A strategy for P is winning for P if each play consistent with it is won
by P. The winning region of a player P in a game G, denoted by Wp(G),
is the set of states from where P has a winning strategy.

The attractor of W for player P in the game G, denoted AttrS(W),
is the set of states from which P can ensure that the token will reach the
set W in a finite number of moves. It is computed inductively as usual:
Wy =W and W41 is the union of W,,, {q € Vp | 3¢ € W,,,(q,¢') € E}
and {q € V | V¢ € W,,(q,q') € E}. The attractor strategy for player P
is positional, and consists in always going from a state of W,, to a state
in W, _1, thus getting closer to W. The complexity of the computation of
either the attractor set or the attractor strategy is O(m).

A trap is the dual of an attractor, and hence is a set from which one
of the players cannot escape: A trap 7" C V for player P is a region such
that each state belonging to the other player has a successor in 7', and
each state in Vp has all its successors in T. Note that the complement
of an attractor is a trap for the same player, and that a trap is always a
sub-arena.

Once again, the notions of attractor and trap depends only on the
arena of the game.

In this paper, we will be interested in families of winning conditions
that can be played on the same arenas.

3 Parity Games

3.1 Parity Conditions

A parity coloring p is a function that associate an integer to each state of
an arena A. A parity arena is an arena equipped with a parity coloring.
All the parity games that we define depend only on the parity arena they
are played on. It is thus legitimate to talk about "the weak parity game
on the arena A," without further precision. In complexity computations,
we will call ¢ the number of colors

The parity games that are usually studied are the two that follows:

Weak parity games: A play is winning for Eve if the least color ap-
pearing in the play is even.

(Classical) parity games: A play is winning if the least color appearing
infinitely often in the play is even.

In this paper, we will study another kind of parity games, called fini-
tary parity. These games were introduced by Chatterjee and Henzinger
in [CHO6]. Intuitively, a play is winning for Eve in finitary parity if for
each odd color that occurs infinitely often, a smaller even color occurs



infinitely often, as in classical parity, with the added constraint that the
delay between an occurrence of an odd color and the next smaller even
color must be ultimately bounded.

The formal definition uses the notion of delay sequence of a play:

15 defined as follows:

— If p(pi) is even, then d(p); = 0.
— If p(pi) is odd, then d(p); is the smallest j such that p(piy;) is even
and p((p)i+j) < p(pi)). Note that if there are no such j, d(p); = .

A play p on a parity arena A, is winning for Eve in the finitary parity
game if and only if d(p) is ultimately bounded. Note that, as the delay
function can take infinite values, "ultimately bounded" is weaker than
simply "bounded".

(c) Win'P # WinP

Fig. 2. Example of finitary parity games

Figure 2 gives some examples of how these games work. In the first
arena 2(a), Adam can control the time between occurrences of 1, but an
occurrence of 0 always comes immediately after. The delay sequence is
made only of 0 and 1. Thus Eve wins in the finitary parity game. In the
second arena 2(b), Adam can control the time spent between the first
1 and the next 0, or even choose never to go to 0. The first element
of the sequence can thus be as high as Adam wants, or even infinite,
but all following values will be equal to 0. Thus Eve wins in the finitary
parity game. Notice that, in the weak-parity game, Adam would have



won if the play had begun in the state 1. In the third arena 2(c), however,
Adam can delay the time between a 1 and the next 0 as long as he wants
before allowing the loop to go on. Thus he can make the delay function
unbounded and win the finitary game. Notice that he would not win in
the classical parity game.

In [CHO6], Chatterjee and Henzinger proved the following results about
finitary parity games:

— Finitary parity games are determined (i.e. Winﬁp(A)U Winép(/l) =A).
— Eve has a positional strategy.
— Adam has no finite memory strategy.

Finitary parity games can be solved in time O(n?*=3-¢-n).
Finitary parity games are in NP N co-NP.

Our algorithm for finitary games will use yet another kind of parity
games, that we called repeating parity game. This games is also defined
in terms of delay sequence: A play p is winning if the associated delay
sequence is bounded. For games on finite arenas, it is easy to see that the
bound can be set beforehand at n: If Eve cannot reach a smaller even
color in less than n moves, then she cannot reach it at all.

3.2 Algorithms

Another vision of the repeating parity games is to consider them as weak-
parity games where Adam can reset the set of visited states whenever he
wants. The other constraint, boundedness, is not really a problem for Eve,
as we have seen. This intuition is formalized in the lemma 3

Lemma 3. « : The winning region of Adam in the weak-parity game on
an arena A, is also winning for him in the repeating parity game on
the same arena. The attractor of this region is also winning for him in
this game.

B : If Eve wins everywhere in the weak-parity game on an arena A,, then
she wins everywhere in the repeating parity game on the same arena.

Proof. « : A play is winning for Adam in the weak parity game if the
smallest color visited is odd. Obviously, a smaller even color cannot
occur later. Thus Win'"(A) C Win'l(A). The case of the attractor is
solved by the following observation: If a play p is winning for Adam
in the repeating parity game, then each play of the form w.p is also
winning for him in this game. Thus Attra(Winy?(A)) C Win'{(A) O



B : An arena were Eve wins everywhere in the weak-parity game looks
like figure 3.2. In this game, Eve needs only to play according to the
attractors’ strategies whenever the token is not in one of the top-most
regions. This guarantees that in at most n moves, the token will get to
an even state in the top-most regions without crossing a smaller odd
color. Thus Eve also wins everywhere in the repeating parity game.

O

no "1"s here neither "1"s nor "3"s nor "5"s here
neither "1"s nor "3"s here

Fig. 3. An arena where Eve wins everywhere in weak-parity

This lemma leads directly to the following algorithm:

Algorithm 1 Algorithm computing the winning regions of Adam and
Eve for the repeating parity game
Require: Algorithm for computing the winning regions in a weak-parity game

input A, p

B—A

repeat

B «— B\ Attra(Win%* (B, p))
until Win'i?(B,p) =0
return B, A\ B

The termination of the algorithm 1 is guaranteed by the fact that in
each "repeat" loop, B looses at least one state. This limits the number of
such loops to n. As weak-parity games are solved in time c-m, the global
complexity of our algorithm is ¢-m - n.



The validity of this algorithm comes from lemma 3.

We will now solve finitary games using the same kind of contruction.
Lemma 4 gives relations between the winning regions of repeating parity
and finitary parity that are very similar to the ones in lemma 3.

Lemma 4. « : The winning region of Eve in the repeating parity game
on an arena Ay is also winning for her in the finitary parity game on
the same arena. The attractor of this region is also winning for her in
this game.

G : If Adam wins everywhere in the repeating parity game on an arena
A, then he wins everywhere in the finitary parity game on the same
arena.

Proof. « : A play is winning for Eve in the repeating parity game if
the associated delay function is bounded. It is winning for her in
the finitary parity game if this function is ultimately bounded. Thus
Win'F(Ap)) C Wingp(.Ap). As the finitary parity condition is prefix
independent, we can conclude that Attrp(WiniZ (A,)) C ngp(Ap)

O
0B : The second part of the proof is more complex. Adam has a strategy
7 that is winning everywhere in repeating parity. From it, we derive
the following strategy 7':
1. Set bto 1
2. Play the strategy m with initial memory from the state where the
token is now until there is a sequence with an odd priority followed
by b moves without seeing a smaller even priority.
3. Increment b
4. Go back to step 2.
It is immediate that if a play consistent with this strategy behave in
such a way that Adam goes infinitely often through the loop, then it
is winning for Adam in the finitary parity game. The only point that
causes trouble is the step 2. But a play that would get stuck in this
state would be a play consistent with 7 where for each occurrence of
an odd color, there is an occurrence of a smaller even color in the next
b moves. This would be a contradiction to the hypothesis that = is
winning for Adam. Thus 7’ is winning for Adam in the finitary parity
game. O

As for repeating parity, we use this lemma to build an algorithm solv-
ing finitary parity games.



Algorithm 2 Algorithm computing the winning regions of Adam and
Eve for the finitary parity game
Require: Algorithm for computing the winning regions in a repeating parity game
input A, p
B— A
repeat
B — B\ AttTE(Wi
until Win}?(B,p) =
return A4\ B, B

ng (B,p))
)

As in Algorithm 1, the termination and complexity are guaranteed
by the fact that the repeat loop removes one state from B. Likewise, the
complexity is n times the complexity of the former algorithm, or ¢-m-n?.

This algorithm is thus much faster than the one of |[CH06|, and puts

the problem in P instead of NP N co-NP.

4 Streett Games

4.1 Streett Conditions

A Streett coloring s over an arena A is a set of pairs of sets of states of A.
The first element of a pair is called a "request", and the second element
is the corresponding "response". A Streett arena A; is an arena equipped
with a Streett coloring. The rank of a Streett arena is the number of
pairs that constitutes the Streett coloring. The rank of a Streett game is
the rank of its arena. In complexity computation, the rank of the Streett
condition will be denoted by k. As was the case for parity games, all the
variants of Streett games that we will define depends only on the Streett
arena they are played on. Again, there are two classical versions of the
Streett games:

Weak Streett games: A play is winning for Eve if for each request that
occur in the play, the corresponding response also occurs.

(Classical) Streett games: A play is winning for Eve if for each re-
quest occurring infinitely often in the play, the corresponding response
also occurs infinitely often.

Chatterjee and Henzinger also introduced a finitary version of the
Streett games in [CHO6]. Intuitively, a play is winning for Eve in finitary
Streett if for each request that occurs infinitely often, the corresponding
response occurs infinitely often, as in classical Streett, with the added
constraint that the delay between an occurrence of a request and the next
corresponding response must be ultimately bounded.



The formal definition also uses a notion of delay sequence derived from
a play:

Definition 5. The delay sequence d(p) of a play p on a Streett arena A,
15 defined as follows:

— If p; does not belong to a request, then d(p); = 0.

— If p; belong to the request of only one pair, then d(p); is the smallest j
such that p;y; belong to the corresponding response. Note that if there
are no such j, d(p); = oc.

— If p; belong to several requests, then d(p); is the mazimum of the values
computed with the method above for each request.

A play p on a Streett arena A, is winning for Eve in the finitary Streett
game if and only if d(p) is ultimately bounded.

In [CHO6], Chatterjee and Henzinger proved the following results about
finitary Streett games:

— Finitary Streett games are determined.

— Eve has a strategy that uses k! - k? memory states.

— Adam has no finite memory strategy.

— Finitary Streett games can be solved in time O((n-k!-k?)2*=3.m-k!-k3).

As for parity games, we will use another kind of Streett games in our
algorithm, called request-response games. These games were defined and
studied by Wallmeier, Thomas and Hutten in [WHTO3|. Even if these
games do not bear the name Streett, they are defined by a Streett arena:

A play is winning in a request-response game if its delay sequence
takes only finite values, i.e. if for each occurrence of a request, there is
later an occurrence of a corresponding response.

We will use these games in the finitary Streett algorithm in the same
way we used repeating parity games in the finitary parity algorithm. Here,
however, there is no link with the weak-Streett games.

[WHTO03| presents an algorithm to solve request-response games. It is
based on a reduction to generalized Biichi games. The time complexity of
their algorithm is O(4* - k2 - m?). The strategy for Eve that derives from
this algorithm has the property that in each play consistent with it, each
request is matched by a corresponding response in the next k- n moves.
This last remark is very important for our purposes, as the definition of
request-response games in [WHTO03| asks only for finite values of the delay
sequence, not necessarily bounded.

There is a lemma that gives the relation between finitary Streett games
and request-response games:

10



Lemma 6. « : The winning region of Eve in the request-response game
on an arena Ay is also winning for her in the finitary Streett game on
the same arena. The attractor of this region is also winning for her in
this game.

B : If Adam wins everywhere in the request-response game on an arena
As, then he wins everywhere in the finitary Streett game on the same
arena.

Proof. « : In the winning region of Eve in the request-response game, she
can use the strategy derived from [WHTO3|. It guarantees that each
request is matched by a corresponding response in the next k-n moves,
and thus that the delay sequence is bounded. Thus Win (As)) C
Wz'ng(.Ap). As the finitary condition is prefix-independent, we get
Attrp(Winlg (As)) C Winlf (A,). O

B : The construction of a winning strategy for Adam for finitary Streett
from a strategy winning everywhere for him in request-response is close
to the one used to build a winning strategy for him in finitary parity.
If 7 is a winning strategy for Adam in the request-response game, the
strategy 7' is defined by:

1. Set bto 1

2. Play the strategy 7 with initial memory from the state where the
token is now until there is a sequence with a request followed by b
moves without seeing the corresponding response.

3. Increment b

4. Go back to step 2.

Once again a play that does not get stuck in step 2 is clearly winning

for Adam. And a play that would get stuck in the step 2 would be

a play where each request is followed by a response, in contradiction

with the fact that 7 is winning in request-response. Thus 7’ is winning

for Adam everywhere in As. O

The algorithm obtained from this lemma is :

As in the other algorithms, the number of loops is bounded by the
number of states in the arena. The complexity is n times the complexity
of the algorithm for request-response games, or O(4* - k2 - m? - n)

Another result that comes from this algorithm concerns the memory
that Eve needs to win. Her strategy is made only on attractors, and of the
strategies for request-response games, depending only of the position of
the token in the arena. The strategy for a request-response game need k-2%,
and the attractor strategy is positional. Thus Eve needs only k-2* memory
states to win a finitary Streett game on her winning region. This improve

11



Algorithm 3 Algorithm computing the winning regions of Adam and
Eve for the finitary Streett game
Require: Algorithm computing the winning regions in a request-response game
input A, p
B—A
repeat
B — B\ AttTE(Wi
until Wing (B,p) =
return A4\ B, B

ng (B, p))
0

the result of [CH06|, which proved that Eve needed only k! - k? memory
states, from the index of appearance records used in the reduction to
finitary parity games ([BLV96]). Interrestingly, the weak-Streett strategies
for Eve need less memory, with 2¥([NSW02]), while classical Streett games
need k! memory states ([DJW97,Hor05]).

5 Conclusion and Developments

Our algorithms for finitary parity and Streett games are much faster than
the version given in the original paper by Chatterjee and Henzinger. The
finitary parity problem, in particular, was proved to be in P, improving the
former result of NP N co-NP. The algorithm for Streett game represents a
good improvement in time complexity, and yields more compact strategies
for Eve. We had hoped to get a procedure to solve finitary Streett games
with a procedure using weak-Streett games, which would have put this
problem in PSPACE. However, if there is such a procedure, it eluded us so
far.

Our objective in this field of research are an extension of the notion
of finitary games to Muller conditions, and the study of links between
these games and a fragment of the wBS-regular logic of Bojanczyk and
Colcombet.
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